

11100 Johns Hopkins Road Laurel, MD 20723-6099

Initial Results from the Airborne Test Campaign of the Compact Midwave Imaging System (CMIS)

Presenter: Michael Kelly

PI: Michael Kelly

Team Members: J.L. Carr, I. Papusha, D. Wu, A. Goldberg,

K. Yeakel, J. Boldt, C. A. Clayson, F. Ding

Program: NASA ESTO IIP-16-0019

Challenging Problems

- Decadal Survey-Incubation identifies global PBL heights as a high priority
 - Multi-platform stereo photogrammetry based on a constellation of affordable compact imagers provide a promising technique for globally mapping PBL heights and 3D winds
 - Wind fields are derived from atmospheric motion vectors (AMVs) based on tracking clouds and aerosols
- Height assignment
 - Limitations with IR method
 - Limitations with single-platform stereo (e.g. MISR)
 - Stereo height from multi-angle, multi-platforms
- Small or hosted satellite solutions to provide affordable, yet better spatiotemporal coverage
 - LEO-GEO
 - GEO-GEO
 - Future: LEO-, GEO-CubeSat Constellation

Passive-Sensing Stereo Methodology

- Fly midwave imagers to enable day/night stereo calculations using same techniques/bands
- Use imagers on **two** spacecraft several minutes apart to eliminate ambiguity in along-track direction between winds and cloud heights for atmospheric motion vectors (AMVs)
- Utilize cloud-top altitude for AMV height assignment to avoid large errors for thin clouds and temperature inversions

Advantages:

- Estimated CMV/CGH accuracy: ±0.5 m/s, ±200 m assuming 1/4pixel relative geolocation accuracy (Carr et al 2018)
- Minimum detectable along-track precision: <1 m/s
- Wide-field of view coverage to complement future active instruments
- Flexible satellite accommodation CubeSats or hosted on weather satellite

Compact Midwave Imaging System

- JHU/APL developed a compact shortwave/midwave imager with a 640x512 focal plane array (FPA) based on high operating temperature (HOT) technology:
 - Designed for day/night observations in the SWIR/MWIR
 - Enables global data collection of cold and warm temperatures between the poles and tropics due to wide dynamic range
 - Provides a novel capability to detect objects and weather with same FPA
- Employs multi-angle views (fore, nadir and aft) to retrieve heights and motions of objects
- Requires modest size, weight and power (SWaP) which permits accommodation on 6U CubeSats

Specifications

Field	Result
Multi-Spectral	2.25, 3.75, 4.05 µm
Multi-Angle	20°, 0°, -20° views at 3.75 μm
Weight, Power	< 3 kg, 7 W
Operating Temperature	150 K
NEdT	< 1 K for 230 K and 400 K
Readiness	Radiation, vibration tested

Airborne Model

Successful Airborne Flight Demonstration

- Provides multi-angle, multi-spectral imagery based on striped filter
- Proved that low-cost compact imager can provide high-quality datasets
- Could include wavelength stripes to support atmospheric motion vectors, cloud heights, and weather, for example

Stereo Methodology

Stereo Methodology

- Applicable to weather and non-
- weather features
 - Does not need multiple wavelengths for cloud heights
 Do not need multiple wavelengths to discriminate between snow/clouds

Science Flight #1 – 27 Jan 2021

Prepared Imagery for StereoBit* Pipeline

Hold F2

- Initial coarsely aligned triplet of CMIS fore, nadir, aft imagery
- Gray region indicates overlap between all three in the triplet
- Color separation indicates parallax and/or motion

AIST-18-0082

StereoBit: An ESTO AIST project to enable onboard processing of stereo images

Retrievals for Hold F2

- Disparities measure the apparent difference in location between fore-nadir and nadir-aft
- Notice two sets of disparities with one corresponding to ground and other to clouds at 1000 m

Median DEM Height ~275 m

Night Flight – 8 Feb 2021

NASA LaRC Gulfstream-3

Flight Track, 8 Feb 2021

Purpose: Underfly Aeolus and GOES Nighttime data collection Collect on cold surface and Lake Michigan at night

Hold J1 Retrievals

- Along-track winds specified from GOES-GOES retrieval
- Disparities well separated due to high winds
- Primary altitude for for clouds is ~4 km and winds 36 m/s

Heat maps for Hold J

	mean	median	min	max	sigma
Height (m)	4201	4126	3781	4994	294
XT Wind	-35.77	-35.83	-39.48	-31.06	0.99
(m/s)					

Inter-Comparison with GOES and Aeolus

- CMIS heights, cross-track winds consistent with Aeolus and GOES
- Primary cloud-top altitude and winds for this case are ~4-5 km and 35.83 m/s
- CMIS demonstrated good sensitivity to small-scale variability

Summary and Conclusions

- Initial results/comparison with Aeolus and GOES very encouraging
- **Demonstrated** that low-cost compact imager can provide high-quality datasets for science
- Aircraft Problem <u>more difficult</u> than Spacecraft Problem
- Success of airborne campaign demonstrates CMIS readiness for spaceflight

Comparison with Aeolus

- CMIS coverage slightly east of the Aeolus coverage
- CMIS heights, crosstrack winds consistent with Aeolus
- Primary altitude for for clouds is ~4.126 km and winds 35.83 m/s

Motion Vectors

Fore: Overlap region (visible)

Fore: Radiance thresholded cloud mask

Fore: Clouds only

T+0 sec

Motion Vectors

Observed: predominantly eastward cloud motion across fore-aft overlap region

Aft: Radiance thresholded cloud mask

T+58.7 sec

